11.5-Factors on Which the Resistance of a Conductor Depends

11.5-Factors on Which the Resistance of a Conductor Depends Important Formulae

You are currently studying
Grade 10 → Science → Electricity → 11.5-Factors on Which the Resistance of a Conductor Depends

The resistance of a conductor is a critical factor in determining how easily electric current can flow through it. Several factors influence the resistance of a conductor, including material properties, dimensions, and environmental conditions. This section will explore these factors in detail.

1. Nature of the Material

The type of material used for the conductor significantly affects its resistance. Materials can be categorized into conductors, insulators, and semiconductors:

  • Conductors: Materials like copper and aluminum have low resistance, allowing electric current to flow easily.
  • Insulators: Materials such as rubber and glass have high resistance, preventing current flow.
  • Semiconductors: Materials like silicon have resistance values between conductors and insulators, making them useful in electronic devices.
2. Length of the Conductor

The length of the conductor is directly proportional to its resistance. The longer the conductor, the higher the resistance, as electrons encounter more collisions with atoms in the material. This relationship can be expressed as:

R ∝ L

where R is the resistance and L is the length of the conductor.

3. Cross-Sectional Area

The cross-sectional area of the conductor is inversely proportional to its resistance. A larger cross-sectional area allows more pathways for electrons to flow, thus reducing resistance. This can be expressed as:

R ∝ 1/A

where A is the cross-sectional area of the conductor. Therefore, thicker wires have lower resistance compared to thinner ones.

4. Temperature

The resistance of a conductor generally increases with temperature. As the temperature rises, the atoms in the conductor vibrate more, leading to more collisions between electrons and atoms, thereby increasing resistance. The relationship can be expressed as:

R = R0(1 + α(T - T0))

where:

  • R0: Resistance at the reference temperature (T0)
  • α: Temperature coefficient of resistance
  • T: Temperature of the conductor
5. Physical State of the Conductor

The physical state (solid, liquid, gas) of the conductor also affects its resistance. Generally, solid conductors have lower resistance than liquids and gases due to the more orderly arrangement of atoms, which allows electrons to move more freely.

6. Impurities in the Conductor

The presence of impurities in a conductor can significantly affect its resistance. Pure materials tend to have lower resistance, while the introduction of impurities can disrupt the flow of electrons, increasing resistance. This is particularly relevant in metals, where even small amounts of impurities can have noticeable effects.

7. Electric Field Strength

In some cases, the strength of the electric field applied to the conductor can influence its resistance. High electric fields may cause a phenomenon known as “electrical breakdown,” which can lead to a sudden increase in current flow, thus affecting the resistance temporarily.

8. Frequency of Alternating Current

For AC circuits, the frequency of the alternating current can also impact resistance. At higher frequencies, phenomena such as skin effect can occur, where the current tends to flow on the surface of the conductor, effectively increasing the resistance.

Summary of Factors
  • Nature of the material
  • Length of the conductor
  • Cross-sectional area
  • Temperature
  • Physical state of the conductor
  • Impurities in the conductor
  • Electric field strength
  • Frequency of alternating current

11.5-फैक्टर्स जिन पर चालक का प्रतिरोध निर्भर करता है

चालक का प्रतिरोध (Resistance) एक महत्वपूर्ण गुण है जो विद्युत धारा के प्रवाह में रुकावट डालता है। यह कई कारकों पर निर्भर करता है। मुख्य रूप से, निम्नलिखित कारक चालक के प्रतिरोध को प्रभावित करते हैं:

1. लम्बाई (Length) :

चालक का प्रतिरोध उसकी लम्बाई पर निर्भर करता है। यदि किसी चालक की लम्बाई बढ़ाई जाती है, तो उसमें प्रतिरोध भी बढ़ता है। इसका कारण यह है कि जब धारा चालक के माध्यम से बहती है, तो उसे अधिक दूरी तय करनी पड़ती है, जिससे रुकावट बढ़ जाती है।

गणना: $$R \propto L$$ यहाँ, $R$ प्रतिरोध है और $L$ लम्बाई है।

2. क्षेत्रफल (Cross-Sectional Area) :

चालक के क्रॉस-सेक्शनल क्षेत्रफल (व्यास) का प्रतिरोध पर विपरीत प्रभाव पड़ता है। यदि क्षेत्रफल बड़ा होता है, तो प्रतिरोध कम होता है क्योंकि धारा के लिए अधिक स्थान उपलब्ध होता है।

गणना: $$R \propto \frac{1}{A}$$ जहाँ $A$ क्षेत्रफल है।

3. पदार्थ का प्रकार (Material of the Conductor) :

विभिन्न पदार्थों के लिए प्रतिरोध अलग-अलग होता है। यह उनके परमाणु संरचना, आवेश वाहक (electrons) के प्रवाह और विद्युत चालकता (conductivity) पर निर्भर करता है। उदाहरण के लिए, तांबा (copper) और ऐल्यूमिनियम (aluminium) जैसे अच्छे चालक का प्रतिरोध कम होता है, जबकि लकड़ी या रबर जैसे अव्यवस्थापक (insulator) का प्रतिरोध बहुत अधिक होता है।

गणना: $$R = \rho \frac{L}{A}$$ यहाँ, $\rho$ उस पदार्थ की विशिष्ट प्रतिरोधिता (resistivity) है।

4. तापमान (Temperature) :

चालक का प्रतिरोध तापमान पर भी निर्भर करता है। सामान्यत: तापमान बढ़ने पर प्रतिरोध भी बढ़ता है, खासकर धातुओं में। इसका कारण यह है कि जैसे-जैसे तापमान बढ़ता है, पदार्थ के अणुओं की गति तेज होती है, जिससे विद्युत प्रवाह में रुकावट अधिक होती है।

गणना: $$R_t = R_0 (1 + \alpha (t - t_0))$$ जहाँ $R_t$ तापमान $t$ पर प्रतिरोध है, $R_0$ प्रारंभिक तापमान $t_0$ पर प्रतिरोध है, और $\alpha$ तापमान गुणांक (temperature coefficient) है।

5. चालक की संरचना (Shape of the Conductor) :

चालक का आकार और उसकी संरचना भी प्रतिरोध को प्रभावित करती है। यदि किसी चालक का आकार अनियमित होता है या उसकी सतह पर रुकावटें होती हैं, तो यह भी धारा के प्रवाह में रुकावट उत्पन्न करता है और प्रतिरोध बढ़ाता है।

6. आवेश वाहक (Charge Carriers) :

चालक के अंदर आवेश वाहक (जैसे, इलेक्ट्रॉन्स) की संख्या और गति भी प्रतिरोध पर प्रभाव डालते हैं। यदि चालक में आवेश वाहक की संख्या अधिक होती है, तो प्रतिरोध कम होता है, क्योंकि धारा का प्रवाह अधिक सुलभ होता है।

On what factors does the resistance of a conductor depend?

Solution:

On what factors does the resistance of a conductor depend?
The resistance of a conductor depends on the following factors: 1. **Length of the conductor**: Resistance is directly proportional to the length of the conductor. The longer the conductor, the higher the resistance. 2. **Cross-sectional area**: Resistance is inversely proportional to the cross-sectional area of the conductor. A larger area results in lower resistance. 3. **Material of the conductor**: Different materials have different resistivities. Conductors like copper have low resistance, while insulators like rubber have high resistance. 4. **Temperature**: Resistance typically increases with an increase in temperature for most conductors.

Will current flow more easily through a thick wire or a thin wire of the same material, when connected to the same source? Why?

Solution:

Current Flow in Thick vs. Thin Wires

Current will flow more easily through a thick wire compared to a thin wire of the same material when connected to the same source. This is due to the resistance offered by the wires. Resistance is inversely related to the cross-sectional area; hence, a thicker wire has a larger cross-sectional area, resulting in lower resistance. According to Ohm’s Law, the current (I) is equal to the voltage (V) divided by resistance (R). Thus, with lower resistance in a thick wire, more current can flow for a given voltage, leading to better conductivity.

Let the resistance of an electrical component 
remains constant while the potential difference ? across the two ends of the component
 decreases to half of its former value. What 
change will occur in the current through it?

Solution:

Effect of Potential Difference on Current

When the potential difference across an electrical component is reduced to half while keeping the resistance constant, the current flowing through the component will also change. According to Ohm’s Law, which states that current (I) is equal to the potential difference (V) divided by resistance (R), I = V/R. If the potential difference is halved (V/2) and resistance remains the same (R), the new current will be I' = (V/2)/R. Therefore, the current will also decrease to half of its original value, demonstrating a direct relationship between potential difference and current.

Why are coils of electric toasters and electric irons made of an alloy rather than a pure metal?

Solution:

Coils of Electric Toasters and Electric Irons

Coils in electric toasters and irons are made of alloys like nichrome (nickel and chromium) instead of pure metals due to their superior properties. Alloys have higher resistance, allowing them to convert electrical energy into heat more efficiently. This results in better performance and durability. Additionally, alloys can withstand high temperatures without oxidizing or breaking down, ensuring longevity in appliances used for heating. The controlled resistance in these alloys helps maintain consistent heating, preventing overheating and enhancing safety. Therefore, the use of alloys is essential for the efficiency and reliability of these electrical devices.

Use the data in Table 11.2 to answer the following:

(a) Which among iron and mercury is a better conductor?

(b) Which material is the best conductor?

Solution:

Conductivity of Materials

According to Table 11.2, iron is a better conductor than mercury. This is because iron has a higher electrical conductivity compared to mercury, allowing it to carry electric current more effectively. Additionally, the best conductor among the materials listed is silver. Silver has the highest conductivity of all metals, making it the most efficient material for conducting electricity. Its superior conductive properties make it ideal for various electrical applications, despite its higher cost compared to other metals like copper and aluminum.