7.1-Recalling Ratios and Percentages

7.1-Recalling Ratios and Percentages Important Formulae

You are currently studying
Grade 8 → Math → Comparing Quantities → 7.1-Recalling Ratios and Percentages

7.1-Recalling Ratios and Percentages
  • Ratios represent a relationship between two quantities. It is expressed as $a:b$ or $\frac{a}{b}$.
  • Percentages are a way to express a number as a fraction of 100, written as $x\%$.
  • Conversion between ratios and percentages: $a:b = \frac{a}{b} \times 100\%$.
  • To find percentage of a quantity: $\text{Percentage} = \frac{\text{Part}}{\text{Whole}} \times 100$.
  • Ratios and percentages are useful in comparing parts of a whole.
  • In practical problems, ratios and percentages help in expressing and comparing quantities.

7.1-Recalling Ratios and Percentages

In this section, we will revisit the concepts of ratios and percentages, which are foundational for understanding comparisons between quantities. These concepts will be crucial for solving problems involving comparisons, profits, losses, discounts, and many other mathematical situations.

Ratios: A ratio is a way of comparing two quantities by division. It expresses how many times one quantity is contained in another. Ratios are written in the form of $a : b$, where $a$ and $b$ are the two quantities being compared.

Examples of Ratios:

  • If a box contains 8 red balls and 4 green balls, the ratio of red balls to green balls is $8 : 4$, which simplifies to $2 : 1$.
  • If a class has 10 boys and 15 girls, the ratio of boys to girls is $10 : 15$, which simplifies to $2 : 3$.

When comparing two quantities, the ratio can also be expressed as a fraction. For example, the ratio $a : b$ can be written as the fraction $\frac{a}{b}$.

Important Points about Ratios:

  • Ratios can be simplified, just like fractions, by dividing both terms by their greatest common divisor (GCD).
  • Ratios are dimensionless and are often used to compare similar quantities (e.g., length to length, mass to mass).
  • Ratios can also be expressed in decimal form, especially when dividing numbers.

Percentages: A percentage is another way to express a ratio, but in terms of "per hundred." A percentage represents a fraction out of 100 and is written as $x\%$, where $x$ is the value of the ratio expressed as a part of 100.

To convert a ratio into a percentage, follow these steps:

  1. Write the ratio as a fraction, $\frac{a}{b}$.
  2. Multiply the fraction by 100 to convert it into a percentage: $ \frac{a}{b} \times 100 = \text{percentage} $.

Example of Percentages:

  • If a student scores 45 marks out of 50 in a test, the percentage score is calculated as $ \frac{45}{50} \times 100 = 90\%$.
  • If a person spends $300 out of a total income of $1200, the percentage spent is $ \frac{300}{1200} \times 100 = 25\%$.

Converting Percentages Back to Ratios: To convert a percentage back to a ratio, you divide the percentage by 100. For example, a percentage of $25\%$ is equivalent to the ratio $25 : 100$, which simplifies to $1 : 4$.

Important Points about Percentages:

  • Percentages can be used to calculate increase or decrease in quantities, like in profit or loss calculations.
  • Percentages are widely used in daily life, such as in discounts, tax rates, interest rates, etc.
  • To increase a quantity by a percentage, multiply the quantity by $1 + \frac{x}{100}$, where $x$ is the percentage.
  • To decrease a quantity by a percentage, multiply the quantity by $1 - \frac{x}{100}$, where $x$ is the percentage.

Example of Percentage Increase: If the price of an item increases by $20\%$, and the original price is $100$, the new price is: $ 100 \times \left(1 + \frac{20}{100}\right) = 100 \times 1.2 = 120 $.

Example of Percentage Decrease: If the price of an item decreases by $10\%$, and the original price is $150$, the new price is: $ 150 \times \left(1 - \frac{10}{100}\right) = 150 \times 0.9 = 135 $.

7.1-Recalling Ratios and Percentages

इस खंड में, हम अनुपात (Ratios) और प्रतिशत (Percentages) के बारे में महत्वपूर्ण अवधारणाओं को पुनः याद करेंगे। ये दोनों ही गणितीय अवधारणाएँ विभिन्न प्रकार की तुलना और गणना में सहायक होती हैं।

1. अनुपात (Ratio)

अनुपात दो संख्याओं के बीच संबंध को व्यक्त करता है। यह यह बताता है कि एक संख्या दूसरी संख्या के मुकाबले कितनी बार होती है। अनुपात को दो विधियों से लिखा जा सकता है:

  • आधिकारिक रूप: $a : b$
  • भिन्न रूप: $\frac{a}{b}$

यहां, $a$ और $b$ दो संख्याएँ हैं जिनके बीच अनुपात की गणना की जाती है। उदाहरण के लिए, यदि एक कक्षा में 20 लड़के और 15 लड़कियाँ हैं, तो लड़कों और लड़कियों का अनुपात $20 : 15$ या $\frac{20}{15}$ होगा।

2. प्रतिशत (Percentage)

प्रतिशत एक अनुपात होता है जिसे 100 के आधार पर व्यक्त किया जाता है। यह किसी संख्या का 100 में से कितने हिस्से को दर्शाता है। प्रतिशत को इस रूप में व्यक्त किया जाता है:

  • प्रतिशत = $\frac{\mathrm{वांछित \ संख्या}}{\mathrm{कुल \ संख्या}} \times 100$

उदाहरण के लिए, यदि एक कक्षा में 25 छात्रों में से 15 छात्र पास हो गए हैं, तो पास प्रतिशत होगा:

  • पास प्रतिशत = $\frac{15}{25} \times 100 = 60\%$
3. अनुपात और प्रतिशत के बीच संबंध

अनुपात और प्रतिशत दोनों का उद्देश्य किसी संख्या के हिस्से को दिखाना है, लेकिन उनका तरीका अलग होता है। अनुपात में हम दो संख्याओं के बीच संबंध को दर्शाते हैं, जबकि प्रतिशत में हम उस संबंध को 100 के आधार पर व्यक्त करते हैं।

4. अनुपात से प्रतिशत में परिवर्तन

जब हमें अनुपात को प्रतिशत में बदलना होता है, तो हम निम्नलिखित विधि का उपयोग करते हैं:

  • दिया गया अनुपात $a : b$ है। इसे प्रतिशत में बदलने के लिए, पहले इसे $\frac{a}{b}$ के रूप में लिखें और फिर इसे 100 से गुणा करें।
  • अर्थात, प्रतिशत = $\frac{a}{b} \times 100$

उदाहरण के लिए, यदि अनुपात $3 : 4$ है, तो इसे प्रतिशत में बदलने के लिए:

  • प्रतिशत = $\frac{3}{4} \times 100 = 75\%$
5. प्रतिशत से अनुपात में परिवर्तन

जब हमें प्रतिशत को अनुपात में बदलना होता है, तो हम निम्नलिखित विधि का पालन करते हैं:

  • दिया गया प्रतिशत $p\%$ है। इसे अनुपात में बदलने के लिए, पहले इसे 100 से विभाजित करें।
  • अर्थात, अनुपात = $\frac{p}{100}$

उदाहरण के लिए, यदि प्रतिशत 60% है, तो इसे अनुपात में बदलने के लिए:

  • अनुपात = $\frac{60}{100} = \frac{3}{5}$
6. अनुपात और प्रतिशत के उदाहरण

1. यदि किसी कक्षा में 30 लड़के और 20 लड़कियाँ हैं, तो लड़कों और लड़कियों का अनुपात और प्रतिशत निम्नलिखित होगा:

  • अनुपात = $30 : 20$
  • लड़कियों का प्रतिशत = $\frac{20}{50} \times 100 = 40\%$

2. एक स्कूल में 60 छात्रों में से 48 छात्रों को गोल्ड मेडल मिला। गोल्ड मेडल पाने का प्रतिशत होगा:

  • गोल्ड मेडल प्रतिशत = $\frac{48}{60} \times 100 = 80\%$
7. अनुपात और प्रतिशत के विभिन्न उपयोग

अनुपात और प्रतिशत का उपयोग दैनिक जीवन की कई स्थितियों में किया जाता है जैसे कि व्यापार, वित्त, गणना, और सांख्यिकी में। ये दोनों अवधारणाएँ आपको तुलना और संख्याओं के बीच संबंध समझने में मदद करती हैं।

Find the ratio of the following.

(a) Speed of a cycle 15 km per hour to the speed of scooter 30 km per hour.
(b) 5m to 10 km
(c) 50 paise to Rs. 5

Solution:

Find the ratio of the following:

(a) Speed of a cycle 15 km per hour to the speed of scooter 30 km per hour:

Ratio = $ \frac{15}{30} = \frac{1}{2} $

(b) 5m to 10 km:

Convert 10 km to meters: 10 km = 10,000 meters

Ratio = $ \frac{5}{10000} = \frac{1}{2000} $

(c) 50 paise to Rs. 5:

1 Rs. = 100 paise, so Rs. 5 = 500 paise

Ratio = $ \frac{50}{500} = \frac{1}{10} $

Convert the following ratios to percentages.

(a) 3:4
(b) 2:3

Solution:

Convert the following ratios to percentages:

(a) 3:4

To convert the ratio 3:4 to a percentage, divide the first number by the second number and then multiply by 100.

$\frac{3}{4} \times 100 = 75\%$

(b) 2:3

To convert the ratio 2:3 to a percentage, divide the first number by the second number and then multiply by 100.

$\frac{2}{3} \times 100 = 66.67\%$

72% of 25 students are interested in mathematics. How many are not interested in mathematics?

Solution:

72% of 25 students are interested in mathematics. How many are not interested in mathematics?

Given that 72% of 25 students are interested in mathematics, we need to find how many are not interested in mathematics.

The number of students interested in mathematics is:

$ \text{Interested students} = 72\% \times 25 = \frac{72}{100} \times 25 = 18 $

The number of students not interested in mathematics is:

$ \text{Not interested students} = 25 - 18 = 7 $

Therefore, 7 students are not interested in mathematics.

A football team won 10 matches out of the total number of matches they played. If their win percentage was 40, then how many matches did they play in all?

Solution:

Problem:

A football team won 10 matches out of the total number of matches they played. If their win percentage was 40, then how many matches did they play in all?

Solution:

Let the total number of matches played be $x$.

We are given that the team won 10 matches, and the win percentage is 40%. This means that:

Win percentage = $\frac{\text{Number of matches won}}{\text{Total number of matches played}} \times 100$

Substituting the given values, we have:

40 = $\frac{10}{x} \times 100$

Dividing both sides by 100:

0.4 = $\frac{10}{x}$

Now, solve for $x$:

$x = \frac{10}{0.4}$

$x = 25$

Therefore, the total number of matches played is 25.

If Chameli had Rs. 600 left after spending 75% of her money, how much did she have in the beginning?

Solution:

Problem:

If Chameli had Rs. 600 left after spending 75% of her money, how much did she have in the beginning?

Solution:

Let the total amount Chameli had initially be $x$.

According to the problem, Chameli spent 75% of her money. Therefore, the remaining amount is 25% of the total amount.

So, $25\%$ of $x$ is equal to Rs. 600.

In mathematical terms: $0.25 \times x = 600$

Now, solve for $x$:

$x = \frac{600}{0.25}$

$x = 2400$

Therefore, Chameli had Rs. 2400 in the beginning.

If 60% people in a city like cricket, 30% like football and the remaining like other games, then what per cent of the people like other games? If the total number of people is 50 lakh, find the exact number who like each type of game.

Solution:

Problem

If 60% people in a city like cricket, 30% like football, and the remaining like other games, then what per cent of the people like other games? If the total number of people is 50 lakh, find the exact number who like each type of game.

Solution

The percentage of people who like other games = 100% - (60% + 30%) = 10%

Total number of people = 50 lakh

Number of people who like cricket = $ \frac{60}{100} \times 50,00,000 = 30,00,000 $

Number of people who like football = $ \frac{30}{100} \times 50,00,000 = 15,00,000 $

Number of people who like other games = $ \frac{10}{100} \times 50,00,000 = 5,00,000 $