13.1-Introduction to Graphs

13.1-Introduction to Graphs Important Formulae

You are currently studying
Grade 8 → Math → Introduction to Graphs → 13.1-Introduction to Graphs

13.1 - Introduction to Graphs
  • Graphs are visual representations of data using points, lines, or bars.
  • Helps in understanding the relationship between variables.
  • The x-axis (horizontal) and y-axis (vertical) form the coordinate plane.
  • Data points are plotted on this plane using coordinates $(x, y)$.
  • In Cartesian plane, each point represents a unique pair of values.
  • Example: The graph of the equation $y = 2x + 3$ represents a straight line.
  • Graphs can be used for linear and non-linear relationships.
  • Key types: Bar graphs, line graphs, and pie charts.

13.1 - Introduction to Graphs

Graphs are a visual representation of data that help to understand the relationships between different variables. They are widely used in mathematics, science, and everyday life to make data easier to interpret. In this section, we will learn the basics of graphs, starting with the line graph, which is a common way to represent data that changes over time.

13.1.1 - A Line Graph

A line graph is a type of graph that uses points connected by lines to show how data changes over time. It is one of the most effective ways to represent continuous data where the relationship between the variables is linear or shows a trend over a period. Line graphs are commonly used to show trends in various fields such as temperature, stock prices, or population growth.

Key Features of a Line Graph
  • Horizontal Axis (X-axis): This axis represents the independent variable, usually the time or another continuous variable.
  • Vertical Axis (Y-axis): This axis represents the dependent variable, the value that changes with respect to the independent variable.
  • Points: Each point on the graph represents a specific value of the dependent variable at a particular time or position of the independent variable.
  • Line: The points are connected by a line, which helps to visualize the trend or pattern in the data.
Plotting a Line Graph

To plot a line graph, follow these steps:

  1. Step 1: Identify the variables and label the axes. The X-axis typically represents time or the independent variable, while the Y-axis represents the dependent variable.
  2. Step 2: Mark equal intervals on both axes based on the data values.
  3. Step 3: Plot the points on the graph by locating the corresponding values for each variable.
  4. Step 4: Connect the points with a line. This line shows the relationship between the two variables.
Example of a Line Graph

Consider the following data on the temperature recorded at different times of the day:

Time (hrs) Temperature (°C)
6:00 AM 20
9:00 AM 25
12:00 PM 30
3:00 PM 28
6:00 PM 22

To plot this data:

  • The time (in hours) will be plotted on the X-axis.
  • The temperature (in °C) will be plotted on the Y-axis.

The points (6, 20), (9, 25), (12, 30), (15, 28), and (18, 22) will be plotted, and then connected by a line to form the graph.

Mathematical Representation of a Line

In general, a line can be represented by the equation of a straight line in the form:

y = mx + c

  • m: The slope of the line, which indicates the rate of change of the dependent variable with respect to the independent variable.
  • c: The y-intercept, the point where the line intersects the Y-axis when x = 0.

For example, if we have the equation $y = 2x + 3$, it means the slope of the line is 2, and the line crosses the Y-axis at 3.

Interpreting a Line Graph

Once the line graph is plotted, we can interpret the data trends:

  • If the line rises from left to right, the dependent variable is increasing.
  • If the line falls from left to right, the dependent variable is decreasing.
  • If the line is horizontal, it indicates no change in the dependent variable.

In real-world applications, line graphs help identify trends and make predictions based on observed patterns.

13.1 - Introduction to Graphs

ग्राफ़ एक शक्तिशाली गणितीय उपकरण है जिसका उपयोग डेटा और संख्याओं को दृश्य रूप में प्रस्तुत करने के लिए किया जाता है। ग्राफ़ की मदद से हम संख्याओं या आंकड़ों के बीच संबंधों को सरलता से समझ सकते हैं।

ग्राफ़ को दो प्रमुख अक्षों पर प्रदर्शित किया जाता है: x-अक्ष और y-अक्ष। x-अक्ष को क्षैतिज (horizontal) और y-अक्ष को ऊर्ध्वाधर (vertical) कहा जाता है। इन दोनों अक्षों पर बिंदु (points) स्थित होते हैं, जिनका मिलाजुला परिणाम एक ग्राफ़ बनाता है।

ग्राफ़ में बिंदुओं को जोड़ने के लिए विभिन्न प्रकार के रेखाएँ (lines) या वक्र (curves) का उपयोग किया जाता है। इन रेखाओं और वक्रों से हम यह देख सकते हैं कि संख्याओं के बीच कैसे संबंध बनते हैं।

ग्राफ़ का निर्माण करते समय, सबसे पहले यह तय करना होता है कि कौन-सी जानकारी को ग्राफ़ में दर्शाना है और फिर उन संख्याओं के लिए x और y के मान निर्धारित किए जाते हैं।

ग्राफ़ के महत्वपूर्ण भाग

ग्राफ़ में प्रमुख रूप से निम्नलिखित तत्व होते हैं:

  • x-अक्ष (Horizontal Axis): यह वह अक्ष है जिस पर स्वतंत्र चर (independent variable) के मान प्रदर्शित होते हैं।
  • y-अक्ष (Vertical Axis): यह वह अक्ष है जिस पर निर्भर चर (dependent variable) के मान प्रदर्शित होते हैं।
  • बिंदु (Point): ग्राफ़ में हर बिंदु एक विशेष x और y मान के लिए होता है।
  • रेखा (Line): यदि बिंदुओं को जोड़ने पर एक सीधी रेखा मिलती है, तो इसे रेखा कहा जाता है।
ग्राफ़ का निर्माण

ग्राफ़ बनाने के लिए निम्नलिखित कदम उठाए जाते हैं:

  • पहले x और y-अक्ष पर इकाइयाँ (units) निर्धारित की जाती हैं।
  • फिर, प्रत्येक डेटा बिंदु के लिए x और y के मानों को प्राप्त किया जाता है।
  • इन बिंदुओं को उचित स्थानों पर मार्क किया जाता है।
  • बिंदुओं को जोड़ने के बाद ग्राफ़ का रूप स्पष्ट होता है।
सूत्र

ग्राफ़ में कोई भी बिंदु \( P(x, y) \) के रूप में लिखा जाता है, जहाँ:

  • \( x \) - x-अक्ष पर स्थित बिंदु का मान है।
  • \( y \) - y-अक्ष पर स्थित बिंदु का मान है।

उदाहरण के लिए, यदि किसी बिंदु का मान \( P(3, 4) \) है, तो इसका अर्थ है कि \( x \)-अक्ष पर 3 और \( y \)-अक्ष पर 4 पर एक बिंदु है।

रेखा समीकरण

जब हम दो बिंदुओं को जोड़ते हैं, तो एक रेखा बनती है, और इस रेखा का समीकरण कुछ इस प्रकार हो सकता है:

$$ y = mx + c $$

यहाँ:

  • \( m \) - रेखा का ढलान (slope) है।
  • \( c \) - रेखा का y-अवरोध (y-intercept) है।

यह रेखा उन सभी बिंदुओं का प्रतिनिधित्व करती है, जो समीकरण को संतुष्ट करते हैं।

ग्राफ़ के प्रकार

ग्राफ़ के विभिन्न प्रकार होते हैं, जैसे:

  • सीधी रेखा (Linear Graph): जब बिंदुओं को जोड़ने पर एक सीधी रेखा बनती है।
  • वक्र (Curve): जब बिंदुओं को जोड़ने पर कोई घुमावदार रेखा बनती है।

ग्राफ़ का अध्ययन गणित में एक महत्वपूर्ण कौशल है, जो छात्रों को डेटा को समझने और उसका विश्लेषण करने में मदद करता है।

The following graph shows the temperature of a patient in a hospital, recorded every hour.

(a) What was the patient’s temperature at 1 p.m. ?
(b) When was the patient’s temperature 38.5° C?
(c) The patient’s temperature was the same two times during the period given. What were these two times?
(d) What was the temperature at 1.30 p.m.? How did you arrive at your answer?
(e) During which periods did the patients’ temperature showed an upward trend?

The following line graph shows the yearly sales figures for a manufacturing company.

(a) What were the sales in (i) 2002 (ii) 2006?
(b) What were the sales in (i) 2003 (ii) 2005?
(c) Compute the difference between the sales in 2002 and 2006.
(d) In which year was there the greatest difference between the sales as compared to its previous year?

For an experiment in Botany, two different plants, plant A and plant B were grown under similar laboratory conditions. Their heights were measured at the end of each week for 3 weeks. The results are shown by the following graph.

(a) How high was Plant A after (i) 2 weeks (ii) 3 weeks?
(b) How high was Plant B after (i) 2 weeks (ii) 3 weeks?
(c) How much did Plant A grow during the 3rd week?
(d) How much did Plant B grow from the end of the 2nd week to the end of the 3rd week?
(e) During which week did Plant A grow most?
(f) During which week did Plant B grow least?
(g) Were the two plants of the same height during any week shown here? Specify.

The following graph shows the temperature forecast and the actual temperature for each day of a week.

(a) On which days was the forecast temperature the same as the actual temperature?
(b) What was the maximum forecast temperature during the week?
(c) What was the minimum actual temperature during the week?
(d) On which day did the actual temperature differ the most from the forecast temperature?

Use the tables below to draw linear graphs.

(a) The number of days a hill side city received snow in different years
(b) Population (in thousands) of men and women in a village in different years.

A courier-person cycles from a town to a neighbouring suburban area to deliver a parcel to a merchant. His distance from the town at different times is shown by the following graph.

(a) What is the scale taken for the time axis?
(b) How much time did the person take for the travel?
(c) How far is the place of the merchant from the town?
(d) Did the person stop on his way? Explain.
(e) During which period did he ride fastest?

Can there be a time-temperature graph as follows? Justify your answer.