5.3-Respiration

5.3-Respiration Important Formulae

You are currently studying
Grade 10 → Science → Life Processes → 5.3-Respiration

Respiration is a vital life process that involves the biochemical breakdown of food to release energy. This energy is essential for various cellular activities, growth, and maintenance of bodily functions. Respiration can be categorized into two main types: aerobic and anaerobic respiration.

5.3.1 Definition of Respiration

Respiration is defined as the process by which living organisms convert glucose and oxygen into energy, carbon dioxide, and water. It is crucial for providing the energy needed for cellular functions and metabolic activities.

5.3.2 Types of Respiration
  • Aerobic Respiration: This process occurs in the presence of oxygen and is the most efficient form of respiration. The general equation for aerobic respiration is:
    • C6H12O6 + 6O2 → 6CO2 + 6H2O + Energy (ATP)
  • Anaerobic Respiration: This process occurs in the absence of oxygen and produces energy less efficiently. Anaerobic respiration can take different forms depending on the organism:
    • In Yeast: The process is known as fermentation, which produces ethanol and carbon dioxide. The equation is:
      • Glucose → Ethanol + CO2 + Energy
    • In Muscle Cells: The process produces lactic acid and energy when oxygen is scarce. The equation is:
      • Glucose → Lactic Acid + Energy
5.3.3 The Process of Aerobic Respiration

Aerobic respiration occurs in several stages:

  • Glycolysis: This is the first step, occurring in the cytoplasm, where one molecule of glucose is broken down into two molecules of pyruvate. This process generates a small amount of energy (2 ATP) and occurs in both aerobic and anaerobic conditions.
  • Krebs Cycle (Citric Acid Cycle): This cycle occurs in the mitochondria, where pyruvate is further broken down. It generates electron carriers (NADH and FADH2) and releases carbon dioxide. A small amount of ATP is also produced.
  • Electron Transport Chain (ETC): Located in the inner mitochondrial membrane, this stage utilizes the electrons from NADH and FADH2 to produce a significant amount of ATP (approximately 34 ATP). Oxygen acts as the final electron acceptor, forming water as a byproduct.
5.3.4 Importance of Respiration

Respiration plays several crucial roles in living organisms:

  • Energy Production: The primary purpose of respiration is to produce ATP, the energy currency of the cell, which powers various cellular processes.
  • Metabolic Activities: The energy derived from respiration is essential for metabolism, including growth, reproduction, and repair of tissues.
  • Homeostasis: Respiration helps maintain the balance of oxygen and carbon dioxide in the body, contributing to homeostasis and physiological stability.
5.3.5 Differences Between Aerobic and Anaerobic Respiration

There are significant differences between aerobic and anaerobic respiration:

  • Presence of Oxygen: Aerobic respiration requires oxygen, whereas anaerobic respiration occurs in its absence.
  • Energy Yield: Aerobic respiration produces a higher yield of ATP (approximately 36-38 ATP) compared to anaerobic respiration, which yields only 2 ATP.
  • Byproducts: Aerobic respiration produces carbon dioxide and water, while anaerobic respiration produces byproducts like ethanol or lactic acid, depending on the organism.
5.3.6 Respiratory Systems in Organisms

Different organisms have specialized respiratory systems to facilitate gas exchange:

  • In Humans: The respiratory system includes the nose, trachea, bronchi, and lungs. Oxygen is inhaled, and carbon dioxide is exhaled through the alveoli in the lungs.
  • In Aquatic Organisms: Fish use gills to extract oxygen from water, facilitating respiration.
  • In Insects: Insects have a network of tracheae that transport oxygen directly to tissues.


LadyofHats, Public domain, via Wikimedia Commons

5.3-Respiration

जीवों के जीवन के लिए ऊर्जा की आवश्यकता होती है, और इस ऊर्जा को प्राप्त करने के लिए वे श्वसन प्रक्रिया (Respiration) का उपयोग करते हैं। श्वसन एक जैविक प्रक्रिया है जिसमें ग्लूकोज या अन्य कार्बोहाइड्रेट्स का ऑक्सीजन के साथ रासायनिक रूप से विघटन किया जाता है, जिससे ऊर्जा (ATP) उत्पन्न होती है। यह प्रक्रिया सभी जीवों में होती है, चाहे वह पौधे हों या जानवर।

श्वसन के प्रकार

श्वसन मुख्य रूप से दो प्रकार का होता है:

  1. एरोबिक श्वसन (Aerobic Respiration): इसमें ऑक्सीजन का उपयोग करके ऊर्जा उत्पन्न की जाती है। यह प्रक्रिया जटिल होती है और इसमें ग्लूकोज का पूर्ण रूप से ऑक्सीकरण होता है। इसके परिणामस्वरूप ऊर्जा (ATP), पानी (H2O) और कार्बन डाइऑक्साइड (CO2) उत्पन्न होती है।
  2. एनीरोबिक श्वसन (Anaerobic Respiration): इसमें ऑक्सीजन की अनुपस्थिति में ऊर्जा उत्पन्न की जाती है। यह प्रक्रिया कम प्रभावी होती है और इसके परिणामस्वरूप कम ऊर्जा (ATP) उत्पन्न होती है।
एरोबिक श्वसन का रासायनिक समीकरण

एरोबिक श्वसन का रासायनिक समीकरण निम्नलिखित है:

$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + ATP$

श्वसन के चरण

श्वसन की प्रक्रिया में मुख्यतः तीन चरण होते हैं:

  1. ग्लाइकोलाइसिस (Glycolysis): यह चरण सायटोप्लाज्म में होता है। इसमें एक ग्लूकोज अणु (C6H12O6) दो पायरूवेट अणुओं (C3H4O3) में टूटता है, और इसमें ATP का उत्पादन होता है।
  2. केल्विन चक्र (Krebs Cycle): यह चरण माइटोकॉन्ड्रिया में होता है। पायरूवेट अणु माइटोकॉन्ड्रिया में प्रवेश करता है और फिर कार्बन डाइऑक्साइड, ATP, और उच्च ऊर्जा वाले इलेक्ट्रॉन-वाहक अणु (NADH और FADH2) का उत्पादन करता है।
  3. इलेक्ट्रॉन परिवहन शृंखला (Electron Transport Chain): इस चरण में NADH और FADH2 द्वारा प्रदान किए गए इलेक्ट्रॉन ऑक्सीजन के साथ मिलकर ATP का उत्पादन करते हैं।
एनीरोबिक श्वसन का रासायनिक समीकरण

एनीरोबिक श्वसन के दौरान, ग्लूकोज बिना ऑक्सीजन के टूटता है। इसका रासायनिक समीकरण निम्नलिखित है:

$C_6H_{12}O_6 \rightarrow 2C_3H_6O_3 + ATP$

यह प्रक्रिया मांसपेशियों में या खमीर में होती है, और इसके परिणामस्वरूप लैक्टिक एसिड (C3H6O3) उत्पन्न होता है।

श्वसन में उत्पन्न ऊर्जा

एरोबिक श्वसन में 1 ग्लूकोज अणु से लगभग 38 ATP अणु उत्पन्न होते हैं, जबकि एनीरोबिक श्वसन में यह संख्या केवल 2 ATP तक सीमित रहती है।

श्वसन का महत्व

श्वसन जीवन के लिए अत्यधिक महत्वपूर्ण है क्योंकि यह कोशिकाओं को कार्य करने के लिए आवश्यक ऊर्जा प्रदान करता है। यह प्रक्रिया सभी कोशिकाओं में निरंतर चलती रहती है, ताकि जीवों को जीवित रहने के लिए आवश्यक ऊर्जा प्राप्त हो सके।

What advantage over an aquatic organism does a terrestrial organism have with regard to obtaining oxygen for respiration?

Solution:

Advantage of Terrestrial Organisms in Obtaining Oxygen for Respiration
Terrestrial organisms have a significant advantage over aquatic organisms in obtaining oxygen for respiration because oxygen is more abundant in air than in water. The concentration of oxygen in air is around 21%, whereas in water, it is much lower, making it harder for aquatic organisms to extract sufficient oxygen. Terrestrial organisms also have specialized respiratory structures, like lungs, which are more efficient at oxygen exchange compared to the gills of aquatic organisms. Additionally, air has lower density and viscosity, allowing easier movement of gases in and out of the respiratory system.

What are the different ways in which glucose is oxidised to provide energy in various organisms?

Solution:

What are the different ways in which glucose is oxidised to provide energy in various organisms?
Glucose is oxidized to provide energy in different ways depending on the availability of oxygen. In the presence of oxygen (aerobic respiration), glucose is fully oxidized in the mitochondria into carbon dioxide and water, releasing a large amount of energy. In the absence of oxygen (anaerobic respiration), such as in muscle cells during vigorous exercise, glucose is partially oxidized to form lactic acid, releasing less energy. In yeast and some microorganisms, anaerobic respiration leads to the formation of ethanol and carbon dioxide. These processes provide energy for the cells to perform various functions.

How is oxygen and carbon dioxide transported in human beings?

Solution:

How is oxygen and carbon dioxide transported in human beings?
Oxygen is transported in human beings primarily through the red blood cells. When we inhale, oxygen from the alveoli diffuses into the blood, where it binds to hemoglobin in red blood cells to form oxyhemoglobin. This oxygen-rich blood is then circulated to various tissues and cells. Carbon dioxide, a waste product of cellular respiration, is transported in the opposite direction. It diffuses from the tissues into the blood, mostly as bicarbonate ions, and is carried back to the lungs. In the lungs, carbon dioxide is expelled from the body during exhalation.

How are the lungs designed in human beings to maximise the area for exchange of gases?

Solution:

How are the lungs designed in human beings to maximise the area for exchange of gases?
The lungs in human beings are highly structured to maximize the surface area for gas exchange. They contain millions of tiny air sacs called alveoli, which greatly increase the surface area available. Each alveolus is surrounded by a network of capillaries, allowing for efficient diffusion of oxygen into the blood and carbon dioxide out of the blood. The walls of the alveoli are extremely thin and moist, further facilitating gas exchange. Additionally, the branching of bronchi into bronchioles ensures that air reaches all parts of the lungs, maximizing the efficiency of the respiratory process.