6.2-Cubes

6.2-Cubes Important Formulae

You are currently studying
Grade 8 → Math → Cube and Cube Roots → 6.2-Cubes

6.2 - Cubes

A cube of a number is obtained when the number is multiplied by itself three times. In other words, the cube of a number $x$ is written as $x^3$ and it represents the product of the number with itself twice more, i.e.,

Cube of a number: If $x$ is a number, then the cube of $x$ is given by:

$x^3 = x \times x \times x$

For example: - The cube of 2 is: $2^3 = 2 \times 2 \times 2 = 8$ - The cube of 3 is: $3^3 = 3 \times 3 \times 3 = 27$ - The cube of 4 is: $4^3 = 4 \times 4 \times 4 = 64$

Properties of Cubes:

  • For any integer $x$, the cube of $x$ will always result in a number that has the same sign as $x$. For example, if $x$ is positive, $x^3$ is also positive; if $x$ is negative, $x^3$ is negative.
  • The cube of zero is 0: $0^3 = 0$.
  • The cube of a negative number is negative. For example: $(-2)^3 = -8$.
  • The cube of a positive number is positive. For example: $2^3 = 8$.
  • Cube of any number $x$ is always a perfect cube. This means $x^3$ can be expressed as the product of three equal factors of $x$.

Identifying Perfect Cubes:

A number is a perfect cube if its cube root is a whole number. For instance: - $8$ is a perfect cube because $2^3 = 8$. - $27$ is a perfect cube because $3^3 = 27$. - $64$ is a perfect cube because $4^3 = 64$. - $125$ is a perfect cube because $5^3 = 125$.

General Formula for the Cube of a Binomial:

The cube of a binomial expression, such as $(a + b)$ or $(a - b)$, is expanded using the following formulas:

Cube of $(a + b)$: $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

Cube of $(a - b)$: $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

These formulas can be derived using algebraic expansion and are important when dealing with binomial expressions involving cubes.

Examples:

  • For $(x + 3)^3$: $(x + 3)^3 = x^3 + 3x^2 \times 3 + 3x \times 3^2 + 3^3 = x^3 + 9x^2 + 27x + 27$
  • For $(x - 4)^3$: $(x - 4)^3 = x^3 - 3x^2 \times 4 + 3x \times 4^2 - 4^3 = x^3 - 12x^2 + 48x - 64$

Cube Roots:

The cube root of a number $y$ is the value that, when multiplied by itself three times, gives the number $y$. In other words, if $x^3 = y$, then $x$ is the cube root of $y$, and is represented as:

$\sqrt[3]{y} = x$

For example: - $\sqrt[3]{8} = 2$ because $2^3 = 8$. - $\sqrt[3]{27} = 3$ because $3^3 = 27$. - $\sqrt[3]{64} = 4$ because $4^3 = 64$.

6.2 - क्यूब (Cubes)

क्यूब (Cube) किसी संख्या का तीसरा घात (third power) होता है। यदि कोई संख्या $a$ है, तो उसका क्यूब $a^3$ के बराबर होता है। इसका मतलब है कि जब किसी संख्या $a$ को तीन बार अपने आप से गुणा किया जाता है, तो वह संख्या $a^3$ कहलाती है।

क्यूब को समझने के लिए हम एक भौतिक उदाहरण ले सकते हैं। एक क्यूब का आकार एक घन के समान होता है। अगर घन के प्रत्येक किनारे की लम्बाई $a$ हो, तो घन का आयतन (volume) $a^3$ होगा।

क्यूब का सूत्र (Cube Formula)

किसी संख्या का क्यूब निम्नलिखित रूप में व्यक्त किया जा सकता है:

यदि $a$ कोई वास्तविक संख्या है, तो उसका क्यूब $a^3$ होता है।

उदाहरण के लिए:

  • यदि $3$ का क्यूब लिया जाए तो, $3^3 = 3 \times 3 \times 3 = 27$।
  • यदि $5$ का क्यूब लिया जाए तो, $5^3 = 5 \times 5 \times 5 = 125$।
  • यदि $-2$ का क्यूब लिया जाए तो, $(-2)^3 = (-2) \times (-2) \times (-2) = -8$।
क्यूब और क्यूब रूट (Cube and Cube Root)

क्यूब रूट (Cube root) किसी संख्या के क्यूब को उल्टा करने की प्रक्रिया होती है। यदि $a^3 = b$ है, तो $a$ को $b$ का क्यूब रूट कहा जाएगा। इसे इस प्रकार लिखा जाता है:

क्यूब रूट का प्रतीक $\sqrt[3]{b}$ होता है।

उदाहरण:

क्यूब और क्यूब रूट के गुण (Properties of Cube and Cube Root)

क्यूब और क्यूब रूट से संबंधित कुछ महत्वपूर्ण गुण निम्नलिखित हैं:

  1. क्यूब रूट हमेशा तीन संभावित मानों में से एक होता है: एक वास्तविक संख्या और दो जटिल (complex) संख्याएँ।
  2. किसी संख्या का क्यूब रूट निकालने के लिए, उस संख्या को तीन बार गुणा करके क्यूब पाया जा सकता है।
  3. क्यूब रूट और क्यूब एक-दूसरे के उलटे होते हैं। अर्थात, $ \sqrt[3]{a^3} = a$ और $ (\sqrt[3]{a})^3 = a$।
क्यूब का उपयोग (Applications of Cube)

क्यूब का उपयोग कई प्रकार की समस्याओं में किया जाता है, जैसे:

  • घनाकार बॉक्स के आयतन की गणना में।
  • विभिन्न भौतिक परिमाणों के लिए, जैसे घनात्मक क्षेत्र (volume) या घनात्मक गति।
  • ज्यामिति में विभिन्न प्रकार के आकृतियों का अध्ययन करने में।
क्यूब से संबंधित महत्वपूर्ण समीकरण (Important Cube Identities)

क्यूब से संबंधित कुछ महत्वपूर्ण समीकरण निम्नलिखित हैं:

  • $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
  • $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$
  • $(a+b)(a^2 - ab + b^2) = a^3 + b^3$

इन समीकरणों का उपयोग क्यूब के गुणा और जोड़ के परिणामों को सरल रूप में व्यक्त करने के लिए किया जाता है।

Which of the following numbers are not perfect cubes?

(i) 216
(ii) 128
(iii) 1000
(iv) 100
(v) 46656

Solution:

Which of the following numbers are not perfect cubes?

(i) 216: $216 = 6^3$ (Perfect Cube)

(ii) 128: $128 = 4^3$ (Perfect Cube)

(iii) 1000: $1000 = 10^3$ (Perfect Cube)

(iv) 100: 100 is not a perfect cube.

(v) 46656: $46656 = 18^3$ (Perfect Cube)

Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube.

(i) 243
(ii) 256
(iii) 72
(iv) 675
(v) 100

Solution:

Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube:
(i) 243

243 = $3^5$
To make it a perfect cube, we need to multiply by $3$ to get the power of 3 as a multiple of 3.
So, the smallest number to multiply by is $3$.

(ii) 256

256 = $2^8$
To make it a perfect cube, we need to multiply by $2$ to get the power of 2 as a multiple of 3.
So, the smallest number to multiply by is $2$.

(iii) 72

72 = $2^3 \times 3^2$
To make it a perfect cube, we need to multiply by $3$ to make the power of 3 a multiple of 3.
So, the smallest number to multiply by is $3$.

(iv) 675

675 = $3^3 \times 5^2$
To make it a perfect cube, we need to multiply by $5$ to make the power of 5 a multiple of 3.
So, the smallest number to multiply by is $5$.

(v) 100

100 = $2^2 \times 5^2$
To make it a perfect cube, we need to multiply by $2 \times 5$ to make the powers of 2 and 5 both multiples of 3.
So, the smallest number to multiply by is $10$.

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.

(i) 81
(ii) 128
(iii) 135
(iv) 192
(v) 704

Solution:

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube:

(i) 81

Prime factorization of 81: $81 = 3^4$

To make it a perfect cube, we need to divide by $3^1$, so the smallest number is 3.

(ii) 128

Prime factorization of 128: $128 = 2^7$

To make it a perfect cube, we need to divide by $2^1$, so the smallest number is 2.

(iii) 135

Prime factorization of 135: $135 = 3^3 \times 5$

To make it a perfect cube, we need to divide by $5$, so the smallest number is 5.

(iv) 192

Prime factorization of 192: $192 = 2^6 \times 3$

To make it a perfect cube, we need to divide by $3$, so the smallest number is 3.

(v) 704

Prime factorization of 704: $704 = 2^6 \times 11$

To make it a perfect cube, we need to divide by $11$, so the smallest number is 11.

Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube?

Solution:

Question: Parikshit makes a cuboid of plasticine of sides 5 cm, 2 cm, 5 cm. How many such cuboids will he need to form a cube?

We are given a cuboid with dimensions 5 cm, 2 cm, and 5 cm. To find how many such cuboids are needed to form a cube, we need to calculate the volume of the cuboid and the volume of the cube.

Volume of the cuboid = length $ \times $ width $ \times $ height = 5 cm $ \times $ 2 cm $ \times $ 5 cm = 50 cubic cm.

Let the side of the cube be $ x $. The volume of the cube is given by:

Volume of the cube = $ x^3 $ cubic cm.

To form a cube, the total volume of the cuboids must equal the volume of the cube. Therefore, we need to find the smallest cube whose volume is a multiple of 50 cubic cm.

Let's consider the volume of the cube as a perfect cube number. The cube of 10 cm is:

Volume of the cube = $ 10^3 = 1000 $ cubic cm.

Now, to find how many cuboids are required, divide the volume of the cube by the volume of one cuboid:

Number of cuboids required = $ \frac{1000 \, \text{cubic cm}}{50 \, \text{cubic cm}} = 20.$

Therefore, Parikshit will need 20 cuboids to form a cube.